
J Comput Virol
DOI 10.1007/s11416-006-0013-1

ORIGINAL PAPER

Non-signature based virus detection
Towards establishing a unknown virus detection technique using SOM

In Seon Yoo · Ulrich Ultes-Nitsche

Received: 20 February 2006 / Accepted: 12 April 2006
© Springer-Verlag France 2006

Abstract A non-signature-based virus detection
approach using Self-Organizing Maps (SOMs) is pre-
sented in this paper. Unlike classical virus detection
techniques using virus signatures, this SOM-based ap-
proach can detect virus-infected files without any prior
knowledge of virus signatures. Exploiting the fact that
virus code is inserted into a complete file which was
built using a certain compiler, an untrained SOM can
be trained in one go with a single virus-infected file and
will then present an area of high density data, iden-
tifying the virus code through SOM projection. The
virus detection approach presented in this paper has
been tested on 790 different virus-infected files, includ-
ing polymorphic and encrypted viruses. It detects viruses
without any prior knowledge – e.g. without knowledge
of virus signatures or similar features – and is there-
fore assumed to be highly applicable to the detection of
new, unknown viruses. This non-signature-based virus
detection approach was capable of detecting 84% of the
virus-infected files in the sample set which included, as
already mentioned, polymorphic and encrypted viruses.
The false positive rate was 30%. The combination of the
classical virus detection technique for known viruses and
this SOM-based technique for unknown viruses can help
systems be even more secure.

I. S. Yoo (B) · U. Ultes-Nitsche
Department of Computer Science,
University of Fribourg, Fribourg, Switzerland
e-mail: in-seon.yoo@unifr.ch

U. Ultes-Nitsche
e-mail: uun@unifr.ch

1 Introduction

Virus software is probably the most widely discussed
class of computer threat at the moment. To qualify as a
virus, a program must meet one particular criterion [1]:
the code in the program must be able to replicate or copy
itself so as to spread through the infected machine or
across to other machines. The main of spreading email
viruses in 2005 was in the form of file worms sent via
emails. In September 2005, the top ten viruses (53.2%)
were file worms distributed by email attachments and/or
network shares [2]. Nonetheless, the original method of
virus infection, i.e. by infecting a file with a piece of
additional code, must not be ignored. These “classical”
viruses are the scope of this paper.

Classic virus-detection techniques look for the pres-
ence of a virus-specific sequence of instructions, called
a virus signature, inside a program. If the signature is
found, it is highly probable that the program is infected.
In the specific case of searching for a particular malicious
code instance, it is not only possible, but performed daily
by anti-virus software. Apart from commercial anti-virus
solutions for detecting known viruses in virus-infected
files, what options are we left with in addressing un-
known viruses? The research presented in this paper dif-
fers from traditional approaches to the malicious code
problem in that it does not attempt to define or iden-
tify malicious behavior. Instead, the research focuses on
structural characteristics of executable malicious code.
This approach allows for methods of examining any
application, whether previously known or unknown, in
order to determine if it has been tampered with since
its original development. Such tampering usually takes
the form of an embedded virus or Trojan horse that is
activated during subsequent executions of the program.

I. S. Yoo, U. Ultes-Nitsche

Prior work presented in Yoo [3] described an approach
to visualize virus patterns using self-organizing maps
(SOMs) [4]. The SOM visualization of virus-infected
files proved that the virus detection approach without
prior knowledge of virus signatures using SOM made
sense. In this paper, we go into more details of virus
recognition and present a virus detection program, Vi-
rusDetector, which has been developed for determining
whether a file is virus-infected or not, based on the prior
work using SOM [4].

SOM is a neural network using an unsupervised
learning-strategy, which does not require that users spec-
ify desired outputs as they would have to in supervised
learning [5]. SOM is a so-called feed-forward neural-net-
work whose unsupervised training algorithm incorpo-
rates a process called self-organization, i.e. it configures
the output units into a topological representation of the
original data [6]. (More details can be found in books
on SOMs such as [4–8].)

As we will show, virus-infected files cannot hide the
presence of the virus through the SOM projection.
Exploiting this fact we manage to detect viruses. As no
knowledge (no signature, etc) about a virus is required to
detect it, not only known viruses but also unknown ones
can be detected by our approach. Like defense in depth,
we can build much more secure systems by accompany-
ing traditional virus-detection techniques based on virus
signatures with our non-signature based virus-detec-
tion technique for unknown viruses. This paper explains
and presents the non-signature based virus detection
approach.

2 Data material and methods

The research presented in this paper focuses only on
viruses, not on worms. The initial target file format con-
sidered is Microsoft Windows executable format as
about 80% of detected viruses or worms were Windows
executable files; in particular, approximately 61% had
an “.EXE” file extension [9].

2.1 Test data collection

In total, 790 virus-infected files (291 Win9x files and 499
Win32 files), 80 normal (i.e. non-infected) Windows exe-
cutable files and 15 macro-virus-infected Windows Word
files were tested using our approach, including down-
loadable application programs such as SSHSecureShell
Client-3.2.9.exe, dxwebsetup.exe, klcodec220b.exe and al-
ready installed executable programs such as Excel.exe,
Winword.exe, Acrobat.exe, servertool.exe. . . These virus-
infected files were detected and caught in between 1996

and 2004. Even “old” viruses are still of interest as
they have several variants which appear nowadays. For
example, variants of the CIH/Chernobyl [10] virus have
appeared each year since 1998. All test data, file infor-
mation and the test results are listed in the appendix.

2.2 File format and virus types

Parasitic viruses Parasitic viruses are all viruses which
change the content of target files while transferring
copies of themselves. The files themselves remain com-
pletely or partly usable [11]. The most common method
of virus incorporation into a file is by appending the virus
to the end of the file as shown in Figure 1. In this pro-
cess, the virus changes the header of file in such way that
the virus code is executed first. In Windows and OS/2
executables (NewEXE – NE, PE, LE, LX), the fields
in the NewEXE header are changed. The structure of
this header is much more complicated than that of a
conventional DOS EXE file, so there are more fields to
be changed: the starting address, the number of sections
in the file, properties of the sections, etc. In addition to
that, before infection, the size of the file may increase
to a multiple of one paragraph (16 bytes) in DOS or to
a section in Windows and OS/2. The size of the section
depends on the properties of the EXE file header [11].

The structure of the data of a virus-infected file is
similar to what can be seen in Figure 2, where the posi-
tions are octal number. When we examine several virus-
infected files, most files have the same size of the DOS
stub (say, 128 bytes), and varying other parts. Apart from
the virus code, only the PE (portable executable format)
header is filled with quite similar character patterns, con-
taining text, data, source and relocation information.
The program code and data contain compiler-generated
character sequences. Looking at Figure 2, the character
sequence of the virus code differs from the other pro-
gram code, which means that the program code and the
inserted virus code have different data characteristics,

Fig. 1 Virus positions in EXE and document files

Non-signature based virus detection

Fig. 2 Structure of Windows Executable file: DOS Stub, PE header part, Program Code and Data and Virus position

e.g. because the original code was compiled as one solid
piece of code, and the virus is injected only afterwards.

If these four different areas in the virus-infected file
are identified, they can be used to prove the virus visu-
alization is correct as done in the next section. Each
different area will be labeled, e.g. DS for the DOS stub,
PE for the NewEXE header, PR for the program code
and data, and VS for the virus code. These labels are
only used to identify where each part of the file will be
located in the SOM projection, in order to show that
the virus code is located in an area of close neighbor-
hood; the labels are not necessary for SOM training and
visualization.

Macro viruses Another virus type appearing in Win-
dows systems is the macro virus. Macro viruses are pro-
grams written in macro languages of programs such as
Microsoft Word and Excel as presented in Figure 3. To
propagate, such viruses use the capabilities of macro
languages and with their help transfer themselves from
one infected file, e.g. document or spreadsheet, to an-
other. Microsoft Word Version 6 and 7 allows to en-
crypt macros in documents [12]. Therefore, some word
viruses are present inside the infected documents in an
encrypted, execute-only form.

Polymorphic viruses Polymorphic viruses cannot, or
can with significant effort, be detected using virus sig-
natures. Polymorphic viruses try to remain undetected
by changing their structure with each infection. There
is no unique signature, that anti-virus programs can

Fig. 3 Macro virus position in an infected document

search for. Some polymorphic viruses even use different
encryption techniques with every infection. In this pa-
per, we do not deal with polymorphic viruses separately
because these polymorphic viruses can be included in
parasitic and macro viruses, and they can be handled
similarly to parasitic and macro viruses with our ap-
proach. We simply assume that polymorphic viruses are
somehow inserted in the executable file and this inserted
virus code, as described in Section 2.2, will differ again
from the original program code. Thus whether encrypted
or polymorphic, the virus code can be distinguished from

I. S. Yoo, U. Ultes-Nitsche

Fig. 4 Table-format data:
there can be any number of
samples, but all samples have
fixed length, and consist of
the sample variables

the original program code as it is injected into an intact,
kind of homogeneous program file.

2.3 SOM training and visualization

The SOM Toolbox 2.0 [13], a software library for
MATLAB 6.0 [14], was used under Linux to visualize
virus-infected files. The visualization experiments were
carried out under Linux as a precaution against infection
with any of the viruses we used (they were all Windows
viruses). A virus detection program, VirusDetector, was
then developed which uses the SOM algorithms initially
employed in the MATLAB visualization. However, it
does not visualize the viruses anymore but solely de-
cides whether or not the visualization had contained the
so-called virus mask which indicates the presence of a
virus.

Data preparation for SOM training To train a SOM,
a virus-infected file’s binary data was converted into a
table of numerical values. In general SOM data, each
row of the table is one data sample, which means the
entire table consists of n different data samples. The
columns of the table are the variables. The items in one
row are values of these variables from the data set. The
number of variables depends on data features and was
chosen to be eight in our experiments.

The eight variables are presented in Figure 4. For the
virus-detecting SOM, multiple bytes were given to each
variable to reflect characteristic data features. Each row
of the table is one row of one (possibly virus-infected)
file’s binary data, and the table is a transformed form of
the (possibly virus-infected) file (“file under test”).

To match the table structure with multiple bytes per
variable in the table, a common octal-dump open source
program (command name “od” in Linux) was rewritten
to remove the front offset information from the dump
output, transforming a binary file into a short-integer
typed data format. The short integer format was chosen
in order to keep the range of numerical values rela-
tively small (in C, short integers range from −32,768 to
+32,767). In this transformation, 4 bytes are assigned to
each of the eight variables per row, i.e. each input sample
of the SOM will contain 32 bytes of the file under test.

To summarize, the table consists of single 8 × 4-byte
data samples representing n (number of rows) different
portions of the file under test without overlapping data.
It should be noted that this is an unusual way of using a
SOM (it is not trained with n different data samples but
it is “trained” with n fractions of the same sample).

Visualization method There are many different meth-
ods of displaying SOMs. We use the unified distance
matrix or Umatrix since the shape of the Umatrix corre-
sponds to the density structure of the input data, and the
location of the best-matching prototypes corresponds to
the topography of the input data. Therefore, the SOM
“trained” with a file under test reflects the file’s structure
in the Umatrix.

The Umatrix represents the map as a regular grid of
neurons which can be visualized easily. Every neuron
gets a numeric value assigned that corresponds to its
local density in the input-space: the average distance
between its prototype and the neighboring nodes’ pro-
totypes. A low value corresponds to a high local density,
a high value to a low local density. For visualization pur-
poses, these values can be converted easily into a color
scheme: a light (low value) color corresponds to a high
local density, a dark (high value) color to a low local
density, or vice versa.

Even though a colorful visualization was produced
easily using MATLAB, VirusDetector does not require
colorful visualization; only the Umatrix neurons’ values
are used for detection. Thus, VirusDetector uses an inter-
nal Black/White representation of the Umatrix’s node
values using textual information.

Process of SOM training and visualization Figure 5
illustrates the process of SOM training and visualiza-
tion. Each step in Figure 5 is described subsequently.

1. Data buffer represents the input data in a table
format. The size of the input data is arbitrary. In
this example we assume we can partition it into
four parts labeled A, B, C and D, each represent-
ing n rows of the input data (the entire input data
consists of 4n rows, where n is an arbitrary num-
ber). A consists of n rows containing the data des-
ignated by a11, a12, . . . , a18, a21, a22, . . . , a28, . . ., and

Non-signature based virus detection

Fig. 5 Process of SOM training and visualization

an1, an2, . . . , an8. Similarly B, C, and D are defined.
There is no data overlap between any of these parts.
Finally, in this step, the entire data is normalized and
then used to train the SOM.

2. At the beginning of the SOM training, the entire
data is quantized and in an initial training step, ei-
genvectors to each entity are calculated. There ex-
ists a random and a linear initialization phase in the
training of SOMs. In our approach, we use the linear
initialization, which uses a linear mapping whose ei-
genvectors are used in the initialization phase.

3. Using certain parameters in the SOM training
phase, namely hexagonal topology, Gaussian
neighborhood and particular map size values, each
row value of the weight vector is calculated and up-
dated until finding best matches to the input data.

4. The weight vector is used for updating the vector
value in each point (SOM cell).

5. Once the entire weight vector structure is calcu-
lated, the values are saved in the so-called code-
book vector. In each step, the winning entry is found
in the codebook using Euclidean distance by going
through the list of all weight vectors, each time com-
puting the distance between the codebook and the
input entry from the weight vector.

6. Once the fine tune is performed, the codebook is
fixed and consists of best matched vector values.

7. The weight vector and the codebook are referenced
and updated for rough tune and fine tune.

8. The Umatrix is one of the methods to visualize a
SOM. The Umatrix visualizes the codebook vector
values.

9. The Umatrix visualization reflects the quantized
data. Similar data is located in a close neighbor-
hood to one another, producing an area of similar
data density.

10. Having given different sections of the data with
different names allow a represention the location
of each group of the data in the Umatrix. The pur-
pose of the illustration is to cluster around the data
in the Umatrix, about which we know the initial in
the input data, aiming at identifying what the SOM
does to that data. This cluster of data represents the
data’s close neighborhood. In this way, virus data
will turn out to be represented in close neighbor-
hood to one another, which can be distinguished
from the other data.

SOM projection Figure 6 shows a simple example to
illustrate the process of SOM training and visualization.
It shows that if there is similar “isolated” data in a file,
it will be distinguished from remaining data during the
training of the SOM.

1. There is a very small input data set in the data
buffer. For simplicity, we label identical data rows
with one of the letters A, B, C, D and E. A, B,
C, and D represent exactly one row of data,

I. S. Yoo, U. Ultes-Nitsche

Fig. 6 Example of SOM training and visualization

E represents the last four rows of identical data. We
will use this example to present how the Umatrix re-
flects the existence the area of identical data labeled
with E.

2. This is the input data after normalization. The en-
tire data structure is not changed – E still represents
rows of identical data.

3. After the SOM training process, the codebook is
produced as presented in Figure 6 (3).

4. The Umatrix presents the codebook vector values.
In our example, only the bottom-right neurons are
in close neighborhood to one another when com-
pared to other neurons.

5. The illustration presents how SOM training located
the data based on their density. The “E data” ap-
pears in an area of neurons with a close neigh-
borhood relation to one another compared to
other data because relatively many identical data
instances (labeled with E) were fed into the SOM
to train it. That caused the SOM to calculate a
high density of data belonging to E, meaning that

the neurons are in close neighborhood to one an-
other. The illustrated data location using the labels
was created after identifying each neuron in the
Umatrix with its original label. We will call the way
the original data is distributed in the UMatrix the
“SOM distribution” (explained in the next section
using Figure 7) with data labels.

It is important to note that we are using labels only to
identify where a previously identified part of the input
data will be distributed. They are not a part of the train-
ing process itself. By using such a labeling we will show
that an area in the UMatrix, which we will call the virus
mask, indeed represents virus data. In the detection sys-
tem we develop, data is obviously unlabeled as we do
not have any prior knowledge about where, if at all, virus
data and other fraction, of the data are located.

SOM data distribution This technique was used to iden-
tify which data part was located where. Using this SOM
distribution, the virus part was identified and proved

Non-signature based virus detection

Fig. 7 Example of SOM
distribution with labeled data

that the virus detection approach using SOM was rea-
sonable. Note that this SOM distribution was only used
for the purpose of proving where input data was distrib-
uted to.

The way to produce this distribution of data as pre-
sented in Figure 7 is a bit different from normal SOM
training. That is the reason why the output of the Uma-
trix [Figure 7 (2)] is different from Figure 6 (4).

1. The same data buffer, which was used in Figure 6,
holds labeled data at the end of each row. In this
case, each row belongs to that label, e.g. the first
row belongs to label ‘a’.

2. This SOM distribution represents each label’s data
density. Each label’s data is located together. This
method is used for identifing each data’s location
and density. The SOM distribution proves that the
E part is located together in Figure 6 (4) and illus-
trated in Figure 6 (5).

2.4 Virus visualization

Here we discuss how viruses can be visualized using our
approach. For the two types of viruses – parasitic viruses

and macro viruses – one example will be presented. In
the SOM projection, we will identify a particular pattern
which signals the presence of a virus. We will refer to this
pattern as the virus mask.

Win95.CIH virus We discuss this virus here as it was
one of the most famous viruses which appeared periodi-
cally from 1998 to 2004 in slightly different variants. Fig-
ure 8 shows the SOM projection of two Windows’ exe-
cutable files before Win95.CIH infection. The SOM pro-
jections of the tested Windows executables are differ-
ent to one another, because they are different execut-
able files. However, after Win95.CIH infection, the SOM
projections of the files develop a similar pattern, as pre-
sented in Figure 9: a dark area (navy colored in the
colored map, representing an area of SOM cells where
each cell has a short distance to its neighboring cells).
The easily identifiable dark spot is what we call the virus
mask. It is the pattern that signals the presence of a virus
in the file under test.

Figure 9 shows two SOM projections after training
the SOM with two Win95.CIH (versions 1.2 and 1.3)
infected Windows’ executable files respectively. Each
Win95.CIH/Chernobyl virus mask has an obvious

Fig. 8 SOM projections of two different Windows EXE files before Win95.CIH virus infection

I. S. Yoo, U. Ultes-Nitsche

Fig. 9 SOM projections of
Windows EXE files infected
by Win95.CIH v1.2 and v1.3
viruses

Fig. 10 Virus SOM
Distribution of CIH 1.2 and
1.3 viruses

location: top of the center. Although the tested Windows
executable files were different, the SOM projections of
CIH virus-infected files look similar and have the same
sort of projection map.

To prove that the virus mask indeed represents the
CIH virus code, the SOM was trained in another
experiment with data to which labels DS (DOS stub), PE
(NewEXE header), PR (program code) and VS (virus
code) were attached. The labels reflect the structure of
an infected file as was presented in Figure 2. In order to
attach the labels, the structure of the infected file was
examined “by hand”. When the data set was produced,
to each row a label was added, as shown in Figure 7 (1).
The result of the SOM distribution with labeled data
is presented in Figure 10. This SOM distribution has
grouped the same labels together. Therefore the figures
of the SOM distribution with labels are quite different
from the normal SOM projection (Figure 9).

The circles in Figure 10 identify the different data
areas except for the program code area (PR). PR is
simply represented by the remaining area. As Figure 10
shows, there are two parts where cells have a smaller dis-
tance to their neighboring cells: PE (NewEXE header)
and VS (Virus Code). Even though PE shows an area of
smaller distances between two SOM cells, VS dominates
the area of small cell distances (black area in gray-scale,
navy-colored area in color print), proving that the virus
mask identified in Figure 9 represents indeed virus code.

MacroWord97.Mbug Virus When the SOM was trained
with MacroWord97.Mbug viruses, the results were like
that in Figure 11. Although the figures of the SOM pro-
jections look very similar to the virus mask in the CIH
example, the result of analyzing the SOM data distri-
bution (Figure 12) showed that the majority of the top-
center located data was not the virus code (VS) part but

Non-signature based virus detection

were labeled OD and SD (these reflect the particular
structure of Word documents and will not be discussed
any further in this paper).

Thus, the result indicates that we cannot deal with
macro viruses in the same way we deal with parasitic
viruses. Our approach, therefore is insensitive to macro
viruses. (Since it is sensitive to parasitic viruses it is still
worth being employed whatever.)

2.5 The process of virus detection

With our knowledge about the virus mask in SOM pro-
jections of virus-infected files, we built VirusDetector
which, based on SOM algorithms, detects the virus mask.
Apart from the colorful visualization result using MAT-
LAB, VirusDetector uses a simple Black and White color
scheme.

Figure 13 shows the step-wise process in VirusDetec-
tor. After feeding a binary executable file to VirusDetec-
tor, the data is converted into integer format. Then the
data is normalized using certain SOM parameters such
as topology type: Hexa, neighborhood: Gaussian, map
size: 12 × 8, radius1: 10, radius2: 3, learning rate1: 0.05
for rough tune, learning rate2: 0.03 for fine tune, train-
length1: 1,000, and trainlength2: 10,000. Afterwards, the
SOM is trained with the normalized data. Unfortunately,
there is no theoretical basis for the selection of these
parameters [4]. The parameter settings were determined
experimentally from our visualization results using the
SOM toolbox in MATLAB. Note that the graphical rep-
resentation of the SOM depends on the initialization,
meaning that a virus mask might be located elsewhere,
or be shown in a totally undetectable form for a differ-
ent initialization. However, using the mentioned (good)
parameters, the SOM projection produces the patterns
which VirusDetector can search for and finally find the
virus mask if it is present.

While the SOM is trained, it produces a codebook
for storing the data. Using this codebook, VirusDetector
calculates the Umatrix in Black and White. High val-
ues (dark SOM cells) indicate high data density which
is particularly the case for virus data. A “factor value”
is used for selecting which high values are significant.
According to these B/W Umatrix values, VirusDetector
filters out the Umatrix values above the factor value and
saves them. To represent the filtered-out values on the
two dimensional projection plane, the character “S” is
used (each SOM cell with an assigned gray-scale value
above the factor value is represented by an “S”, all other
cells are blank). This produces a representation of the
projection plane in form of ASCII strings. After pro-
ducing the map of “S” s, VirusDetector searches for the
virus pattern and marks the virus mask if present. After

identifying the virus mask, VirusDetector decides that
the file under test is virus-infected.

Here is an example of the detection process as de-
picted in Figure 14.

1. Data buffer presents a virus-infected file’s short-
integer-formatted data.

2. After normalization in VirusDetector, the codebook
of the input data is produced.

3. VirusDetector calculates the values of the Umatrix
neurons from the codebook, assigning a gray-scale
color value to each neuron (SOM cell).

4. If the factor value is 72, which is used in VirusDetec-
tor, the neurons with a higher value than the factor
value are selected, as presented in Figure 15a.

5. The filtered values are replaced by character “S”
to create strings as presented in Figure 15b, and Vi-
rusDetector manipulates the strings to search for the
virus pattern. In the final step, VirusDetector decides
on the found pattern whether or not it represents a
virus mask.

3 Results

Using VirusDetector, we tested the 790 virus-infected
files listed in the appendix. The test set only includes
virus-infected executable Windows files. Since experi-
ments with labeling the input data showed that it can-
not detect macro viruses properly, macro viruses are
excluded from the test set.

3.1 Unencrypted parasitic viruses

Figure 16 presents the SOM projection of the Win95.
Anxiety virus and recognition result produced by Virus-
Detector respectively. As the result shows, the virus mask
is represented roughly by the strings of “S” s. Figure 17
contains the equivalent result for the Win32.HLLP.
Semisoft virus. Tables 1 and 2 summarize the exper-
iments conducted on some virus-infected executables
in Win9x and Win32 format, respectively. Results on
the recognition of non-infected executable files are pre-
sented in Table 3. The complete result list can be found
in the appendix.

3.2 Polymorphic and encrypted parasitic viruses

Among the 790 virus-infected test files, there were 30
Win9x encrypted and 15 polymorphic parasitic viruses.
These represent about 15% of the tested Win9x virus-
infected files. In the case of Win32 executables, 30 were

I. S. Yoo, U. Ultes-Nitsche

Fig. 11 SOMs of Word97 file infected by Macro viruses

Fig. 12 SOM distribution of
Word97 file infected by
Macro viruses, left whole file
projection, right without
having Other Data part

Fig. 13 The process of virus detection in VirusDetector

Non-signature based virus detection

Fig. 14 Virus detection example

Fig. 15 In B/W Umatrix,
only bigger values than the
factor value 72 are selected
and replaced by character ‘S’

Fig. 16 SOM Umatrix and detection result of W95 Anxiety.1397 virus

I. S. Yoo, U. Ultes-Nitsche

Fig. 17 SOM Umatrix and detection result of Win32.HLLP.Semisoft virus

Table 1 Win9x virus detection result by VirusDetector

Virus name Size Date Detection Virus name Size Date Detection

Altar.797 8,192 6-19-99 O Altar.884 4,096 10-4-02 O
Altar.910 4,096 10-24-99 O Antic.695 7,863 9-2-02 O
Anxiety.1358 1,52,778 3-1-04 O Anxiety.1397 49,736 3-1-04 O
Anxiety.1399 8,192 3-21-98 O Anxiety.1399.b 49,736 3-1-04 O
Anxiety.1422 5,684 11-22-03 O Anxiety.1451 29,213 2-21-01 O
Anxiety.1486 8,192 1-24-98 O Anxiety.1517 8,192 11-22-03 O
Anxiety.1586 42,590 11-22-03 O Anxiety.1596 49,736 3-11-98 O
Anxiety.1823 8,192 3-1-04 O Anxiety.1823.b 6,196 7-2-03 O
Anxiety.2471 8,192 11-22-03 O Apop.1086 8,192 7-17-02 O
Argos.310 4,096 9-2-02 O Argos.328 4,096 3-1-04 O
Argos.335 4,096 9-24-02 O Argos.402 4,096 6-30-99 O
Bodgy.3230 97,438 4-15-03 X Bonk.1232 19,632 11-22-03 O
Bonk.1243 9,460 3-1-04 O Boza.2220 24,576 11-22-03 X
Boza.a 12,408 3-17-96 O Boza.b 7,994 11-22-03 O
Boza.c 16,384 3-1-04 O Boza.d 16,384 11-22-03 O
Boza.e 16,384 11-22-03 O ByteSV.Thorn.886 20,480 11-22-03 O
Caw.1262 2,05,550 11-22-03 O Caw.1335 5,943 3-1-04 O
Caw.1416 55,964 11-22-03 O Caw.1419 54,667 11-22-03 X
Caw.1457 6,065 11-22-03 O Caw.1458 8,192 10-5-02 O
Caw.1525 24,576 11-22-03 O Caw.1531 8,192 11-2-01 O
Caw.1557 1,80,224 12-31-00 O Chimera.1542 35,846 11-22-03 O
CIH 19,536 7-8-02 O CIH.1003.b 4,608 3-1-04 O
CIH.1010.b 37,394 11-22-03 O CIH.1016 34,304 9-2-02 O
CIH.1019.c 4,896 3-1-04 O CIH.1024 1,553 3-1-04 O
CIH.1026 1,555 3-1-04 O CIH.1031 4,096 9-2-02 O
CIH.1035 1,564 3-1-04 O CIH.1040 1,59,744 3-1-04 O

Win9x Virus total number: 291, Error number: 26, False negative: 0.09 (approx. 9%)

Date indicates the virus’s detected and caught date in form MM-DD-YY

Virus names are also the names of the test files. Size unit is byte

encrypted and 50 were polymorphic. This represents
again approximately 16% of all tested Win32 virus-
infected files. The way VirusDetector checks these files
is identical to testing for unencrypted, non-polymorphic
viruses. The results in the encrypted or polymorphic case
are quite noticeable. In the case of Win9x executables,
either encrypted or polymorphic viruses were detected
easily by VirusDetector with 3% and 13% false negative
rate, respectively. In case of Win32 executables contain-
ing an encrypted virus, the false negative rate was lower
(13%) than VirusDetector’s average false negative rate

on the entire data set (presented in Tables 4 and 5).
However, the false negative rate for Win32 executa-
bles infected with a polymorphic virus was much higher
(42%) than average (16%) (see Tables 6 and 7).

All encrypted Win9x viruses we used in our tests
are listed in Table 4, all polymorphic Win9x viruses
are in Table 6, all encrypted Win32 viruses are in Ta-
ble 5, and all polymorphic Win32 viruses are in Table 7,
each attached with their size, the date when they were
caught and the test result of VirusDetector. For informa-
tion about these polymorphic and encrypted parasitic

Non-signature based virus detection

Table 2 Win32 Virus
detection result by
VirusDetector

Win32 Virus total number:
499, Error number: 103, False
negative: 0.2064 (approx.
21%)

Date indicates the virus’s
detected and caught date in
form MM-DD-YY

Virus names are also the
names of the test files. Size unit
is Byte

Virus name Size Date Detection Virus name Size Date Detection

Adson.1559 8,192 7-26-02 O Adson.1734 20,480 11-22-03 O
Aidlot 8,192 10-4-04 O Akez 32,768 4-27-02 O
Aliser.7825 12,288 3-6-03 O Aliser.7897 8,192 6-8-03 O
Aliser.8381 8,192 6-8-03 O Alma.2414 10,606 3-1-04 O
Awfull.2376 3,072 9-9-03 O Awfull.3571 4,096 3-1-04 O
Bakaver.a 24,576 10-6-03 O Banaw.2157 8,192 11-22-03 O
Barum.1536 5,632 8-31-02 O Bee 24,576 3-1-04 O
Beef.2110 57,344 3-1-04 O Belial.2537 8,192 11-22-03 O
Belial.2609 2,54,513 3-9-02 X Belial.a 4,096 3-10-04 O
Belial.b 4,096 2-23-02 O Belial.c 4,096 11-22-03 O
Belial.d 4,096 9-24-02 O Belod.a 8,192 3-12-02 O
Belod.b 8,192 8-21-02 O Belod.c 8,192 3-14-02 O
Bender.1363 3,584 12-31-01 O Bika.1906 8,192 12-31-01 O
BingHe 2,96,643 10-11-02 X Blackcat.2537 8,192 9-9-03 O
Blakan.2016 8,192 12-31-01 O Blateroz 8,192 9-2-02 O
Blueballs.4117 16,384 11-22-03 X Bobep 8,192 8-25-03 O
Bogus.4096 38,400 10-13-99 O Bolzano.2122 36,864 2-10-03 O
Bolzano.2664 15,135 2-10-03 O Bolzano.2676 15,183 2-10-03 O
Bolzano.2716 13,521 2-10-03 O Bolzano.3100 15,277 2-10-03 O
Bolzano.3120 15,331 2-10-03 O Bolzano.3148 15,373 2-10-03 O
Bolzano.3164 15,409 2-10-03 O Bolzano.3192 15,457 3-1-04 O
Bolzano.3628 16,095 3-1-04 O Bolzano.3904 16,251 2-10-03 O
Bolzano.5572 28,237 2-10-03 O Butter 96,665 9-2-02 X

Table 3 Normal executable
program’s virus check result
by VirusDetector

Normal executable file’s total
number: 80, Error number:
24, False positive: 0.3 (approx.
30%)

If the result of detection is
marked X, VirusDetector says
this file is a virus-infected file,
which means incorrect detec-
tion

Filename Detection Filename Detection

dxwebsetup.exe divx311.exe
awsepersonal.exe DVD2DIVXVCD_trial.exe
paulp_en1.exe adrenalin2.0.1.exe
GOMPLAYER14.exe sdvd190.exe
csdl13.exe HwpViewer.exe
SSHSecureShellClient-3.2.9.exe DivX505Bundle.exe
klcodec220b.exe SwansMP24a-WCP.exe
DivXPro511GAINBundle.exe NATEON.exe X
WinPcap_3_1_beta_3.exe ducp708_type3_free.exe
wmpcdcs8.exe Acrobat.exe
iTunes.exe pccmain.exe
sicstusc.exe Tra.exe
acrodist.exe java.exe X
PCcpfw.exe sicstus.exe
Trialmsg.exe X Ad-Aware.exe
javaw.exe X PCctool.exe
splfr.exe X tsc.exe
AdobeUpdateManage.exe jpicp132.exe X
Photoshp.exe spmkds.exe
conf.exe policytool.exe X
spmkrs.exe X unregaaw.exe
CSDL.exe kinit.exe X
Sshclient.exe ssh2.exe

viruses, please refer to the site about Windows viruses at
KASPERSKY (Metropolitan Network BBS Inc., Bern,
Switzerland) [15].

3.3 False positives versus false negatives in
VirusDetector

A false positive occurs when we test a non-infected file
and the test result categorizes the file as positive (i.e.

infected). In the inverse case of a not-detected-infected
file, the outcome is called a false negative. The false neg-
ative rate and the false positive rate are interdependent;
to decrease one is to increase the other. Therefore, it is
important to decide which side to decrease and which
to increase. A significant role is played by the factor
value, one uses it in VirusDetector to decide whether the
value of SOM cell is significant or not (i.e. whether or
not the cell is likely to present a fraction of the virus

I. S. Yoo, U. Ultes-Nitsche

Table 4 Win9x encrypted
parasitic virus detection result
by VirusDetector

Encrypted Win9x Virus total
number: 30, Error number: 1,
False negative: 0.03 (3%)

Virus name Size Date Detection Virus name Size Date Detection

Bumble.1736 8,192 3-1-04 O Bumble.1738 8,192 11-22-03 O
Iced.1344 44,032 9-6-01 O Iced.1376 8,192 11-22-03 O
Iced.1412 8,192 11-22-03 O Iced.1617 8,192 3-1-04 O
Iced.2112 8,192 3-1-04 O Mad.2736.a 32,768 10-4-04 O
Mad.2736.b 32,768 10-4-04 O Mad.2736.c 32,768 1-7-02 O
Mad.2736.d 32,768 1-7-02 O Mad.2806 32,768 1-19-98 O
Nathan.3276 7,372 9-2-02 O Nathan.3520.a 12,288 3-10-04 O
Nathan.3520.b 16,384 9-9-01 O Nathan.3792 1,85,552 10-23-99 O
Obsolete.1419 5,003 3-1-04 O PoshKill.1398 8,192 4-21-01 O
PoshKill.1406 8,192 3-17-03 O PoshKill.1426 8,192 8-20-01 O
PoshKill.1445.a 8,192 3-10-04 O PoshKill.1445.b 8,192 11-22-03 O
Priest.1419 4,096 8-9-99 O Priest.1454 4,096 3-1-04 O
Priest.1478 9,728 6-10-00 X Priest.1486 9,728 10-4-01 O
Priest.1495 9,728 8-18-01 O Priest.1521 9,728 3-1-04 O
Shoerec 3,21,536 8-12-01 O Tip.2475 10,752 11-22-03 O
Voodoo.1537 61,441 11-22-03 O Werther.1224 6,344 12-31-01 O

Table 5 Win32 encrypted
parasitic virus detection result
by VirusDetector

Encrypted Win32 Virus total
number: 30, Error number: 4,
False negative: 0.13 (13%)

Virus name Size Date Detection Virus name Size Date Detection

Ditto.1488 6,096 3-1-04 O Ditto.1492 12,288 11-22-03 O
Ditto.1539 8,192 10-1-00 O Gloria.2820 16,384 11-22-03 X
Gloria.2928 16,384 3-1-04 O Gloria.2963 12,288 10-1-00 O
Idele.2104 8,192 7-8-03 O Idele.2108 8,192 3-1-04 O
Idele.2160 8,192 11-12-03 O IhSix.3048 8,192 11-22-03 O
Infinite.1661 8,192 3-1-04 O Levi.2961 12,288 5-16-01 O
Levi.3040 7,188 11-22-03 O Levi.3090 12,288 11-22-03 O
Levi.3137 35,941 11-22-03 O Levi.3205 12,288 3-1-04 X
Levi.3240 16,384 8-17-02 O Levi.3244 16,384 11-22-03 X
Levi.3432 16,384 11-22-03 O Mix.1852 4,096 5-30-00 O
Niko.5178 65,611 11-22-03 X Santana.1104 81,920 12-4-01 O
Savior.1680 8,192 1-8-01 O Savior.1696 12,288 5-18-01 O
Savior.1740 12,288 3-28-02 O Savior.1828 20,480 8-6-01 O
Savior.1832 12,288 3-1-04 O Savior.1904 12,288 12-4-01 O
Undertaker.4887 12,288 11-22-03 O Undertaker.5036.a 12,288 11-22-03 O

Table 6 Win9x Polymorphic
virus detection result by
VirusDetector

Win9x Polymorphic Virus to-
tal number: 15, Error number:
2, False negative: 0.13 (13%)

Virus name Size Date Detection Virus name Size Date Detection

Begemot 8,192 3-1-04 O Darkmil.5086 12,288 3-1-04 X
Darkmil.5090 74,210 7-2-03 O Fiasko.2500.a 8,192 11-22-03 O
Fiasko.2500.b 12,935 3-1-04 O Fiasko.2508 8,192 3-1-04 O
Invir.7051 9,728 3-1-04 O Luna.2636 8,192 4-24-02 O
Luna.2757.a 62,213 3-10-04 O Luna.2757.b 12,288 1-1-80 O
Marburg.a 4,93,789 3-10-04 O Marburg.b 28,381 11-22-03 X
Matrix.3597 35,916 2-14-03 O Merinos.1763 9,216 3-1-04 O
Merinos.1849 8,192 11-22-03 O

mask). To determine the threshold of decision in certain
patterns, the test results of all 790 virus-infected and 80
non-infected Windows executable files were taken into
account. For different factor values, the false-positive
and false-negative rates of the tests on the entire data
set are presented in Figure 18.

As Figure 18 shows, the false positives remain more
or less in the same range (0.25–0.3) for factor values
72 and 79. On the other hand, the false-negative rate
is increased significantly. Thus, a factor value of 72 is
selected in VirusDetector to achieve a false-negative rate

of approximately 16% and keep the false-positive rate
below 30%. So, without knowing any virus signature
and anything else about a virus, we can detect a virus
infection with a probability of 84% and false positive
rate of 30%. Some further fine-tuning might be nec-
essary, possibly on the cost of reducing the detection
capabilities (i.e. increasing the false-negative rate), in
order to decrease the false positives.

Using the factor value (72), all the files (790 virus-
infected files and 80 non-virus-infected normal execut-
able files) were tested. The full list of information

Non-signature based virus detection

Table 7 Win32 polymorphic virus detection result by VirusDetector

Virus name Size Date Detection Virus name Size Date Detection

Andras.7300 14,238 7-27-02 O AOC.2044 8,192 11-28-99 O
AOC.2045 8,192 11-26-99 O AOC.3657 16,384 3-1-04 O
AOC.3833 16,384 3-1-04 O AOC.3860 20,480 2-10-03 X
AOC.3864 20,480 2-10-03 O Champ 12,288 2-10-03 O
Champ.5430 12,288 10-6-02 O Champ.5464 12,288 2-10-03 O
Champ.5477 12,288 10-6-02 O Champ.5495 6,144 2-10-03 X
Champ.5521 12,288 2-10-03 X Champ.5536 12,288 2-10-03 X
Champ.5714 12,288 2-10-03 O Champ.5722 16,384 2-10-03 X
Chop.3808 64,049 8-29-01 X Crypto 49,152 3-1-04 X
Crypto.a 28,672 11-22-03 X Crypto.b 32,768 11-22-03 O
Crypto.c 32,768 11-22-03 O Driller 94,208 3-1-04 O
Harrier 1,08,544 11-22-03 X Hatred.a 16,384 3-10-04 O
Hatred.d 16,384 10-29-02 O Kriz.3660 4,15,232 7-27-02 X
Kriz.3740 7,64,928 10-4-04 X Kriz.3863 4,75,136 10-4-04 X
Kriz.4029 12,288 3-1-04 O Kriz.4037 12,288 8-19-01 O
Kriz.4050 4,79,232 11-22-03 X Kriz.4057 12,288 8-19-01 X
Kriz.4075 12,288 11-22-03 O Kriz.4099 12,288 11-22-03 X
Kriz.4233 8,192 7-15-01 X Kriz.4271 57,344 10-4-04 O
Prizm.4428 8,704 9-4-02 X RainSong.3874 8,192 11-22-03 O
RainSong.3891 61,509 3-1-04 O RainSong.3910 8,192 12-5-01 X
RainSong.3956 12,288 10-4-04 X RainSong.4198 8,192 3-12-02 O
RainSong.4266 12,288 10-4-04 X Thorin.11932 16,384 3-1-04 O
Thorin.b 16,384 3-1-04 O Thorin.c 16,384 10-23-99 O
Thorin.d 16,384 7-14-99 O Thorin.e 16,384 10-23-99 O
Vampiro.7018 18,432 3-1-04 X Vampiro.a 16,896 3-10-04 O

Encrypted Win32 Virus total number: 50, Error number: 21, False negative: 0.42 (42%)

and results on the tested files is given in the appendix.
Among the 291 Win9x virus-infected files, VirusDetec-
tor failed to detect 26 (approximately 9%, see Table 1).
Among the 499 Win32 virus-infected files, VirusDetector
did not succeed in detecting 103 (approximately 21%,
see Table 2). On the other hand, among the 80 non-
infected Windows executable files, VirusDetector failed
to pass 24 (approximately 30%; see Table 3).

4 Discussion and conclusions

The virus-detection approach presented in this paper
exploits the detection capabilities of a SOM. It basically
uses structural information about the data contained in
an executable file: the virus code is data injected into a
formerly complete and (sort of) homogeneous structure,
namely the program code. Hence the virus, even though
not easily detectable by standard techniques (assuming
that the virus signature is not known), is “somewhat
different” from the program it infected. The SOM in the
non-standard way we used it, is capable of doing just
that: reflecting the presence of data in an executable file
which is somehow different from the rest. Whether the
injected code was an encrypted parasitic or a polymor-
phic parasitic virus does not matter; it still differs from
the rest of the program code. In SOM terminology: its
data density, compared to the original program code, is

high enough to display what we call a virus mask in this
paper (i.e. an area of close neighborhood in the SOM
projection).

Standard anti-virus software can detect variants of
a virus only if different virus signatures are available.
However, the detection approach in this paper detects
viruses independent of any prior knowledge (such as a
virus mask). Even polymorphic or encrypted parasitic
viruses show a virus mask which can be detected by
VirusDetector. Since the question of whether or not a
program contains virus code is, in general, undecidable,
VirusDetector cannot be perfect. It is therefore a good
result that in our tests (with 790 files, all infected by a
different virus or different version of a virus), VirusDe-
tector detected almost 84% of the viruses with a false
positive rate of 30%. During our experiments, based on
the good detection rate of VirusDetector, our confidence
in the possibility of detecting unknown viruses using our
system increased significantly.

Until now, the classical virus-detection techniques
could not deal with unknown viruses (not all, but some).
The SOM-based, non-signature-based virus detection
complements these standard techniques in that it pro-
vides a tool capable of identifying unknown viruses. The
combination of signature-based methods with our ap-
proach can make systems much more secure by making
them less vulnerable to infections by unknown viruses.

I. S. Yoo, U. Ultes-Nitsche

Fig. 18 VirusDetector’s error curve based on factor values

There is still the macro-virus-detection problem. Al-
though the SOM visualization pattern looks very simi-
lar to a virus mask in a NewEXE file, it will always be
produced when a document is checked for macro viruses
using VirusDetector. An approach different from that for
parasitic viruses is therefore needed to deal with macro
viruses. Even though the macro virus is inserted into a
complete document, it is first of all part of a macro and
that macro is then saved in the macro area of a document
file. Because of this, the inserted macro virus data can
not be differentiated from the macro itself and identi-
fied by the SOM neurons. Additionally, the macro virus
part is not big enough to produce a significant neigh-
borhood density and is possibly “hidden behind” low
density data. The macro part is simply too small com-
pared to the entire data structure. Future work will aim

Table 8 Win9x virus detection result by VirusDetector

Virus name Size Date Detection Virus name Size Date Detection

Altar.797 8,192 6-19-99 O Altar.884 4,096 10-4-02 O
Altar.910 4,096 10-24-99 O Antic.695 7,863 9-2-02 O
Anxiety.1358 152,778 3-1-04 O Anxiety.1397 49,736 3-1-04 O
Anxiety.1399 8,192 3-21-98 O Anxiety.1399.b 49,736 3-1-04 O
Anxiety.1422 5,684 11-22-03 O Anxiety.1451 29,213 2-21-01 O
Anxiety.1486 8,192 1-24-98 O Anxiety.1517 8,192 11-22-03 O
Anxiety.1586 42,590 11-22-03 O Anxiety.1596 49,736 3-11-98 O
Anxiety.1823 8,192 3-1-04 O Anxiety.1823.b 6,196 7-2-03 O
Anxiety.2471 8,192 11-22-03 O Apop.1086 8,192 7-17-02 O
Argos.310 4,096 9-2-02 O Argos.328 4,096 3-1-04 O
Argos.335 4,096 9-24-02 O Argos.402 4,096 6-30-99 O
Arianne.1022.a 4,606 3-10-04 O Arianne.1022.b 94,112 11-22-03 O
Arianne.1052 8,192 5-16-02 O Atom.4790 64,182 5-8-02 X
Babylonia.11036 33,734 3-1-04 X Babylonia.attach 5,984 5-16-02 O
Babylonia.Plugin.Dropper 12,606 11-22-03 X Babylonia.Plugin.Greetz 621 11-22-03 X
Babylonia.Plugin.IrcWorm 1,707 11-22-03 O Babylonia.Plugin.Poll 1,041 11-22-03 O
Begemot 8,192 3-1-04 O BlackBat.2615 8,192 5-31-01 O
BlackBat.2787 8,192 11-22-03 O BlackBat.2795 8,192 11-22-03 O
BlackBat.2840 8,192 5-27-01 X BlackBat.2841.a 8,192 3-10-04 O
BlackBat.2841.b 8,192 5-31-01 X BlackBat.2988 8,192 11-22-03 O

to overcome this problem and be able to deal with macro
viruses as well.

Another remaining weakness is the too high false-
positive rate of 30%. Even though the experimental
results are very promising and to some extent even
surprising, additional work must be spent in the fu-
ture on reducing the relative number of false positives.
There is already some scope for that in our approach
by adapting the factor value used by VirusDetector. This
will cause the false-negative rate to increase, which is
partly acceptable. However, we will also examine other
improvements in order to reduce the relative number
of false positives. Still, even if the false-negative rate
must be increased for the sake of reducing the rela-
tive number of false positives, if VirusDetector can only
prevent a single unknown virus from infecting our sys-
tem (or systems world-wide), the significant research
effort spent on developing VirusDetector was absolutely
worth it.

Acknowledgements We would like to thank VX Heavens!
“(http://vx. netlux.org/)”. This site is dedicated to providing infor-
mation about computer viruses (or virii, as some would prefer)
to anyone who is interested in this topic. Almost all virus test
samples used for virus detection in this paper are available in this
site.

5 Appendix

All the test results of VirusDetector are listed here.
Tested files were either Win9x or Win32 executable files
(Tables 8, 9 and 10)

Non-signature based virus detection

Table 8 continued

Virus name Size Date Detection Virus name Size Date Detection

Bodgy.3230 97,438 4-15-03 X Bonk.1232 19,632 11-22-03 O
Bonk.1243 9,460 3-1-04 O Boza.2220 24,576 11-22-03 X
Boza.A 12,408 9-2-99 O Boza.C 16,384 9-10-99 O
Boza.a 12,408 3-17-96 O Boza.b 7,994 11-22-03 O
Boza.c 16,384 3-1-04 O Boza.d 16,384 11-22-03 O
Boza.e 16,384 11-22-03 O Bumble.1736 8,192 3-1-04 O
Bumble.1738 8,192 11-22-03 O Butool.910 14,222 9-2-02 O
Buzum.1828 6,310 3-1-04 O ByteSV.Thorn.886 20,480 11-22-03 O
Caw.1262 2,05,550 11-22-03 O Caw.1335 5,943 3-1-04 O
Caw.1416 55,964 11-22-03 O Caw.1419 54,667 11-22-03 X
Caw.1457 6,065 11-22-03 O Caw.1458 8,192 10-5-02 O
Caw.1525 24,576 11-22-03 O Caw.1531 8,192 11-2-01 O
Caw.1557 1,80,224 12-31-00 O Chimera.1542 35,846 11-22-03 O
CIH 19,536 7-8-02 O CIH.v1.2 19,536 9-12-99 O
CIH.v1.3 36,864 9-3-99 O CIH.v1.4 4,608 9-22-99 O
CIH.1003.b 4,608 3-1-04 O CIH.1010.b 37,394 11-22-03 O
CIH.1016 34,304 9-2-02 O CIH.1019.c 4,896 3-1-04 O
CIH.1024 1,553 3-1-04 O CIH.1026 1,555 3-1-04 O
CIH.1031 4,096 9-2-02 O CIH.1035 1,564 3-1-04 O
CIH.1040 1,59,744 3-1-04 O CIH.1042 53,248 3-1-04 O
CIH.1048 20,480 9-2-02 O CIH.1049 65,536 9-2-02 O
CIH.1103 2,144 11-22-03 O CIH.1106 1,53,088 11-27-02 O
CIH.1122 1,651 9-2-02 O CIH.1129 1,658 3-1-04 X
CIH.1142 16,384 6-19-98 O CIH.1230 1,759 3-1-04 O
CIH.1262 1,778 3-1-04 O CIH.1297 1,826 11-22-03 O
CIH.1363 59,392 3-1-04 X CIH.2563 24,576 9-2-02 X
CIH.2690 94,208 9-2-02 X CIH.816.a 59,392 9-2-02 X
CIH.816.b 5,120 9-2-02 O CIH.862 1,903 5-10-02 O
CIH.876 20,480 9-2-02 X CIH.913 20,480 9-2-02 O
CIH.937 20,480 9-2-02 O CIH.973 1,502 3-1-04 O
CIH.corrupted 1,88,478 1-10-02 O CIH.dam 1,090,318 1-1-03 X
CIH-II.776 53,248 9-2-02 O CIH-II.882 20,480 9-29-02 O
CIH.intended 2,426 8-31-99 O CIH-Killer.1373 9,053 3-1-04 O
CIH.src 3,01,056 3-1-04 X Companion.4096 4,096 3-1-04 O
Croman 16,384 9-2-02 X Dado 3,32,817 3-1-04 X
Darkmil.5086 12,288 3-1-04 X Darkmil.5090 74,210 7-2-03 O
DarkSide.1105 8,192 4-6-02 O DarkSide.1371 8,192 3-1-04 O
DarkSide.1491 9,728 10-4-04 O Dead.1086 8,192 9-29-02 O
Dead.4172 11,392 9-2-02 O Dead.4316 16,796 5-16-02 O
Dead.4388 11,608 9-2-02 O Demo.8192 8,192 11-22-03 O
Dodo.1022 8,192 9-2-02 O Dupator.1503 1,10,592 1-29-04 O
Eak 1,03,424 12-19-02 X Esmeralda.807 4,955 7-15-01 O
Etymo.1308 7,168 3-1-04 O Evil.953.a 60,345 11-22-03 X
Evil.953.b 4,096 9-24-02 O Evil.962 8,192 3-1-04 O
Evil.962.b 35,266 11-22-03 O Evil.962.c 4,096 8-26-01 O
Federal 8,192 9-2-02 O Fiasko.2500.a 8,192 11-22-03 O
Fiasko.2500.b 12,935 3-1-04 O Fiasko.2508 8,192 3-1-04 O
Filth.1030 4,096 3-1-04 O Flee.835 8,192 11-22-03 O
Fono.15327 24,064 3-1-04 X Fono.Trojan 263 5-16-02 O
Frone.864 69,632 5-16-02 X Frone.951 8,192 9-2-02 O
FYS.1728 8,192 7-15-01 O Gara.640 8,192 11-22-03 O
Gara.842.a 8,192 3-10-04 O Gara.842.b 8,192 11-22-03 O
Gara.917 8,192 12-4-01 O Harry.a 8,192 3-10-04 O
Harry.b 8,192 6-2-97 O Hooy.8192 32,768 3-28-00 O
Horn.1851 6,322 3-1-04 O Horn.1862 6,334 11-22-03 O
Horn.2223 6,695 11-22-03 O Horn.2245 6,719 3-1-04 O
HPS.5124 26,563 3-1-04 X I13.a 8,192 11-22-03 O
I13.b 12,288 3-1-04 O I13.c 8,192 3-1-04 O
I13.d 12,288 11-22-03 X I13.e 8,192 11-22-03 O
I13.f 8,192 10-4-02 O Iced.1344 44,032 9-6-01 O
Iced.1376 8,192 11-22-03 O Iced.1412 8,192 11-22-03 O

I. S. Yoo, U. Ultes-Nitsche

Table 8 continued

Virus name Size Date Detection Virus name Size Date Detection

Iced.1617 8,192 3-1-04 O Iced.2112 8,192 3-1-04 O
Icer.541 4,096 11-22-03 O Icer.619 1,92,512 1-13-04 O
ILMX.1291 53,248 3-1-04 O Invir.7051 9,728 3-1-04 O
Jacky.1440 4,646 3-1-04 O Jacky.1443 8,192 11-22-03 O
Javel.512 1,529 3-1-04 O Julus.1904.a 8,192 11-22-03 O
Julus.1904.b 8,192 10-4-04 O Julus.1929.a 8,192 11-22-03 O
Julus.1929.b 8,192 1-23-03 O Julus.2702.a 12,288 11-22-03 O
Julus.2702.b 8,192 8-29-01 O Julus.2777 12,288 11-22-03 O
K32.1012 5,108 11-22-03 O K32.2929 8,192 10-4-02 O
K32.3030 9,174 3-1-04 O K32.Roma.2929 9,643 12-9-00 O
Kaze 20,480 8-8-02 O Kurgan.10240 14,336 9-2-02 O
Lizard.1967 7,099 3-1-04 O Lizard.2381 2,957 3-1-04 O
Lizard.2869 3,715 3-1-04 O Lizard.5150 5,150 10-4-04 O
Lorez.1766.a 8,192 3-10-04 O Lorez.1766.b 8,192 6-28-01 O
LoveSong.998 61,440 12-4-01 O Lud.Hill.401 8,192 3-1-04 O
Lud.Jadis.3567 9,216 3-1-04 O Lud.Jadis.3579 9,216 11-22-03 O
Lud.Jez.676 8,192 3-1-04 O Lud.Jez.682 8,192 11-22-03 O
Lud.Yel.1886 22,141 10-4-04 O Luna.2636 8,192 4-24-02 O
Luna.2757.a 62,213 3-10-04 O Luna.2757.b 12,288 1-1-80 O
Mad.2736.a 32,768 10-4-04 O Mad.2736.b 32,768 10-4-04 O
Mad.2736.c 32,768 1-7-02 O Mad.2736.d 32,768 1-7-02 O
Mad.2806 32,768 1-19-98 O Marburg.a 493,789 3-10-04 O
Marburg.b 28,381 11-22-03 X MarkJ.826 8,192 3-1-04 O
Matrix.3597 35,916 2-14-03 O Memorial 35,515 2-7-98 O
Merinos.1763 9,216 3-1-04 O Merinos.1849 8,192 11-22-03 O
MMort.1335 8,192 11-22-03 O MMort.1340 8,192 11-22-03 O
MMort.1348 8,192 3-1-04 O MMort.1366 8,192 10-23-99 O
Molly.680 8,192 5-16-02 O Molly.722 8,192 3-1-04 O
MrKlunky.a 6,943 3-10-04 O MrKlunky.b 6,779 7-2-03 X
MSpawn.4608 8,897 11-22-03 O Murkry.383 4,096 5-15-02 O
Murkry.398.a 59,392 11-22-03 O Murkry.398.b 4,096 9-24-02 O
Murkry.399 4,096 3-1-04 O Murkry.441 26,624 9-24-02 O
Nathan.3276 7,372 9-2-02 O Nathan.3520.a 12,288 3-10-04 O
Nathan.3520.b 16,384 9-9-01 O Nathan.3792 1,85,552 10-23-99 O
Noise.414 57,344 3-1-04 O Obsolete.1419 5,003 3-1-04 O
Onerin.371 4,096 1-9-02 O Onerin.383 4,096 1-9-02 O
Opa.1103 45,056 5-8-01 O Opa.1149 45,056 7-15-01 O
Padania.1335 8,192 3-1-04 O Paik.1908 8,192 5-14-01 O
PoshKill.1398 8,192 4-21-01 O PoshKill.1406 8,192 3-17-03 O
PoshKill.1426 8,192 8-20-01 O PoshKill.1445.a 8,192 3-10-04 O
PoshKill.1445.b 8,192 11-22-03 O Powerful.1592 6,144 3-1-04 X
Powerful.1773 6,144 3-1-04 O Powerful.1901 12,288 7-12-01 O
Priest.1419 4,096 8-9-99 O Priest.1454 4,096 3-1-04 O
Priest.1478 9,728 6-10-00 X Priest.1486 9,728 10-4-01 O
Priest.1495 9,728 8-18-01 O Priest.1521 9,728 3-1-04 O
Prizm.4428 8,704 9-4-02 X Puma.1024 4,096 3-1-04 O
Regix.4096.a 8,192 3-10-04 O Sanat.3151 16,384 3-1-04 X
Shoerec 321,536 8-12-01 O Sign.2028 8,192 1-8-01 O
Smash.10262 16,384 8-16-01 X SST.952 4,096 3-1-04 O
Tecata.1761 66,029 10-4-04 O Tenrobot.b 49,152 5-14-03 X
Tip.2475 10,752 11-22-03 O Titanic.3214 7,822 8-16-01 O
Uwaga.3237 8,192 11-22-03 O Vivic 8,192 8-17-02 O
Voodoo.1537 61,441 11-22-03 O Werther.1224 6,344 12-31-01 O
Whal.a 8,192 1-24-01 O Whyg.1193 8,192 6-24-01 O
Yabran.3132 4,608 3-1-04 O Yobe 20,480 3-1-04 O
Youd.1388 8,192 11-22-03 O Yoyo.653 4,096 3-1-04 O
Zerg.3849 8,192 3-1-04 O Zofo.848 20,480 3-1-04 O
Zoual 147,456 10-18-02 X

Win9x Virus total number: 291, Error number: 26, False negative: 0.09 (approx. 9%)

Date indicates the virus’s detected and caught date in form MM-DD-YY

Virus names are also the names of the test files. Size unit is byte

Non-signature based virus detection

Table 9 Win32 virus detection result by VirusDetector

Virus name Size Date Detection Virus name Size Date Detection

Adson.1559 8,192 7-26-02 O Adson.1734 20,480 11-22-03 O
Aidlot 8,192 10-4-04 O Akez 32,768 4-27-02 O
Aliser.7,825 12,288 3-6-03 O Aliser.7,897 8,192 6-8-03 O
Aliser.8,381 8192 6-8-03 O Alma.2414 10,606 3-1-04 O
Alma.37195 45,387 11-22-03 X Alma.37274 40,960 4-19-02 X
Alma.5319 13,511 3-1-04 X Andras.7300 14,238 7-27-02 O
AOC.2044 8,192 11-28-99 O AOC.2045 8,192 11-26-99 O
AOC.3657 16,384 3-1-04 O AOC.3833 16,384 3-1-04 O
AOC.3860 20,480 2-10-03 X AOC.3864 20,480 2-10-03 O
Apathy.5378 8,192 3-1-04 O Apparition 96,239 12-22-99 O
Apparition.a 5,42,861 3-10-04 X Apparition.b 1,67,707 6-5-98 X
Arianne.1052 6,684 3-11-02 O Aris 3,31,785 3-1-04 X
Arrow.a 2,048 10-5-04 O Artelad.2173 23,040 12-31-00 O
Asorl.a 32,269 3-10-04 X AutoWorm.3072 3,072 3-1-04 O
Awfull.2376 3,072 9-9-03 O Awfull.3571 4,096 3-1-04 O
Bakaver.a 24,576 10-6-03 O Banaw.2157 8,192 11-22-03 O
Barum.1536 5,632 8-31-02 O Bee 24,576 3-1-04 O
Beef.2110 57,344 3-1-04 O Belial.2537 8,192 11-22-03 O
Belial.2609 2,54,513 3-9-02 X Belial.a 4,096 3-10-04 O
Belial.b 4,096 2-23-02 O Belial.c 4,096 11-22-03 O
Belial.d 4,096 9-24-02 O Belod.a 8,192 3-12-02 O
Belod.b 8,192 8-21-02 O Belod.c 8,192 3-14-02 O
Bender.1363 3,584 12-31-01 O Bika.1906 8,192 12-31-01 O
BingHe 2,96,643 10-11-02 X Blackcat.2537 8,192 9-9-03 O
Blakan.2016 8,192 12-31-01 O Blateroz 8,192 9-2-02 O
Blueballs.4117 16,384 11-22-03 X Bobep 8,192 8-25-03 O
Bogus.4096 38,400 10-13-99 O Bolzano.2122 36,864 2-10-03 O
Bolzano.2664 15,135 2-10-03 O Bolzano.2676 15,183 2-10-03 O
Bolzano.2716 13,521 2-10-03 O Bolzano.3100 15,277 2-10-03 O
Bolzano.3120 15,331 2-10-03 O Bolzano.3148 15,373 2-10-03 O
Bolzano.3164 15,409 2-10-03 O Bolzano.3192 15,457 3-1-04 O
Bolzano.3628 16,095 3-1-04 O Bolzano.3904 16,251 2-10-03 O
Bolzano.5572 28,237 2-10-03 O Butter 96,665 9-2-02 X
Cabanas.a 7,171 5-7-04 X Cabanas.b 7,171 3-1-04 O
Cabanas.Debug 95,748 10-4-04 O Cabanas.e 16,384 7-8-03 O
Cabanas.MsgBox 39,996 10-4-04 X Cabanas.Release 49,152 1-26-99 O
CabInfector 4,096 3-1-04 O Cecile 28,672 12-31-01 X
Cefet.3157 7,253 9-2-02 O Cerebrus.1482 8,192 3-1-04 O
Champ 12,288 2-10-03 O Champ.5430 12,288 10-6-02 O
Champ.5464 12,288 2-10-03 O Champ.5477 12,288 10-6-02 O
Champ.5495 6,144 2-10-03 X Champ.5521 12,288 2-10-03 X
Champ.5536 12,288 2-10-03 X Champ.5714 12,288 2-10-03 O
Champ.5722 16,384 2-10-03 X Chatter 22,528 1-13-03 O
Chop.3808 64,049 8-29-01 X Cornad 4,096 6-22-03 O
Crosser 1,02,400 12-6-03 X Crypto 49,152 3-1-04 X
Crypto.a 28,672 11-22-03 X Crypto.b 32,768 11-22-03 O
Crypto.c 32,768 11-22-03 O Damm.1624 24,576 3-1-04 O
Damm.1628 4,096 5-16-02 O Damm.1647.a 12,288 11-22-03 O
Datus 1,05,472 5-16-02 X Delikon 16,384 1-6-04 O
Devir 24,576 10-4-04 O Dictator.2304 10,496 11-22-03 X
Dislex 1,35,239 3-1-04 X Ditex 2,12,992 4-17-02 O
Ditto.1488 6,096 3-1-04 O Ditto.1492 12,288 11-22-03 O
Ditto.1539 8,192 10-1-00 O Donny.a 8,192 3-10-04 O
Donut 12,800 3-1-04 O Dream.4916 69,632 3-1-04 O
Driller 94,208 3-1-04 O Drivalon.1876 3,072 7-8-03 O
Dudra.5632 12,288 7-7-01 O Eclipse.a 8,192 3-10-04 O
Eclipse.b 6,644 3-15-01 O Eclipse.c 8,192 8-18-99 O
Egolet.a 4,096 3-10-04 O Egolet.b 4,096 7-7-02 O
Elerad 8,192 2-2-02 X Emotion.a 4,608 3-10-04 O
Emotion.b 8,192 11-30-00 O Emotion.c 8,192 2-10-03 O
Emotion.d 8,192 2-10-03 O Emotion.gen 8,192 9-20-01 O

I. S. Yoo, U. Ultes-Nitsche

Table 9 continued

Virus name Size Date Detection Virus name Size Date Detection

Enar 89,088 3-1-04 O Enumiacs.6656 6,656 11-22-03 O
Enumiacs.8192.a 274 10-4-04 O Fighter.a 6,656 11-22-03 O
Fighter.b 8,192 1-29-04 X Flechal 69,632 3-1-04 O
Fosforo.a 8,192 3-10-04 O Fosforo.b 8,192 10-24-02 O
Fosforo.c 8,192 12-31-01 X Fosforo.d 8,192 3-5-03 X
Freebid 14,066 8-27-02 O FunLove.4070 69,635 3-7-04 O
Gaybar 55,493 2-9-04 O gen 8,192 9-3-02 O
Genu.a 8,192 11-22-03 O Genu.b 8,192 11-22-03 O
Genu.c 5,619 8-18-02 O Genu.d 8,192 7-26-02 O
Ghost.1667 8,192 3-1-04 O Ginra.3334 8,966 8-31-02 O
Ginra.3413 8,192 9-2-02 O Ginra.3570 8,192 5-18-02 O
Ginra.3657 8,192 10-4-04 O Ginseng 4,096 8-24-02 O
Giri.4919 1,85,143 11-22-03 O Giri.4970 13,162 3-9-02 O
Giri.5209 12,288 3-28-01 X Gloria.2820 16,384 11-22-03 X
Gloria.2928 16,384 3-1-04 O Gloria.2963 12,288 10-1-00 O
Glyn 8,192 3-1-04 O Gobi.a 4,096 10-23-02 O
Godog 12,288 3-1-04 O Golsys.14292 55,252 8-30-02 X
Grenp.2804 4,608 11-22-03 O Halen.2593 8,192 3-1-04 O
Halen.2618 22,743 7-27-02 O Halen.2619 8,192 7-12-02 O
Haless.1127 31,744 10-4-04 X Harrier 1,08,544 11-22-03 X
Hatred.a 16,384 3-10-04 O Hatred.d 16,384 10-29-02 O
Hawey 5,595 7-12-03 O Heretic.1986 8,192 3-1-04 O
Hezhi 152,064 9-2-02 O Hidrag.a 36,352 8-24-01 X
Highway.a 8,192 11-22-03 O Highway.b 48,177 3-9-02 O
HIV 175 2-10-03 X HIV.6340 12,288 11-22-03 O
HIV.6382 12,288 11-22-03 O HIV.6386 12,288 10-4-04 X
HIV.6680 12,288 3-1-04 X HLL.Fugo 55,808 7-6-04 X
HLLP.BadBy 3,29,728 11-22-03 X HLLP.Bora.11264 11,264 5-8-02 X
HLLP.Clay 60,416 11-22-03 O HLLP.Delvi 46,080 3-11-02 X
HLLP.Famer 22,528 1-18-03 X HLLP.Freefall 36,352 6-15-02 X
HLLP.Gezad 28,672 7-8-03 O HLLP.Givin 34,820 10-4-04 O
HLLP.Gosus 69,590 8-17-02 O HLLP.Gotem 22,016 11-25-02 X
HLLP.Hetis 38,400 2-27-02 O HLLP.Imel 34,816 8-30-02 O
HLLP.Karabah 1,90,988 11-22-03 O HLLP.Kiro 79,632 4-9-04 X
HLLP.Lassa.40960 40,960 5-8-02 O HLLP.Mincer 1,73,315 4-19-02 X
HLLP.MTV 68,096 11-22-03 X HLLP.Nilob 24,576 7-14-00 O
HLLP.Pres 1,24,936 9-2-02 X HLLP.Semisoft 59,904 12-4-99 O
HLLP.Shodi.c 98,318 4-9-04 X HLLP.Sloc 1,04,448 8-31-02 O
HLLP.Sneak 34,816 3-1-04 O HLLP.Thembe 130,322 3-1-04 X
HLLP.Unzi 24,576 3-25-02 O HLLP.Winfig 33,280 11-22-03 O
HLLP.Yai 3,41,211 11-14-99 X Htrip.a 8,192 12-4-01 O
Htrip.b 8,192 11-22-03 O Htrip.c 8,192 12-4-01 O
Idele.2104 8,192 7-8-03 O Idele.2108 8,192 3-1-04 O
Idele.2160 8,192 11-12-03 O IhSix.3048 8,192 11-22-03 O
IKX 4,096 3-1-04 O Infinite.1661 8,192 3-1-04 O
Infis.4608 4,608 3-1-04 O Initx 2,10,432 10-4-04 X
Insom.1972.a 5,120 4-23-04 O InvictusDLL.099 4,096 11-22-03 O
InvictusDLL.102 8,704 9-15-01 X InvictusDLL.a 8,192 3-10-04 X
InvictusDLL.b 8,192 8-17-01 X InvictusDLL.c 8,704 9-10-01 X
InvictusDLL.d 56,466 5-5-99 X Ipamor.a 65,536 3-10-04 X
Ipamor.c 38,913 5-15-03 X Ipamor.d 35,840 5-15-03 X
Ivaz 4,096 11-22-03 O Jater 4,096 3-1-04 O
Jethro.5657 17,433 3-1-04 O Junkcomp 65,536 12-30-02 X
Kala.7620 65,536 12-30-01 X Kanban.a 3,072 3-10-04 O
Keisan.a 8,192 6-2-03 O Keisan.b 8,192 6-2-03 O
Keisan.c 8,192 6-2-03 O Keisan.d 8,192 6-2-03 O
Keisan.e 8,192 6-2-03 O Ketan 4,096 3-1-04 O
Kiltex 1,55,648 3-1-04 O Klinge 8,192 3-1-04 O
KME 36,864 3-1-04 O KMKY 24,576 8-6-01 X
Knight.2350 6,958 12-4-01 O Koru 65,536 5-15-98 O
Kriz.3660 4,15,232 7-27-02 X Kriz.3740 7,64,928 10-4-04 X

Non-signature based virus detection

Table 9 continued

Virus name Size Date Detection Virus name Size Date Detection

Kriz.3863 4,75,136 10-4-04 X Kriz.4029 12,288 3-1-04 O
Kriz.4037 12,288 8-19-01 O Kriz.4050 4,79,232 11-22-03 X
Kriz.4057 12,288 8-19-01 X Kriz.4075 12,288 11-22-03 O
Kriz.4099 12,288 11-22-03 X Kriz.4233 8,192 7-15-01 X
Kriz.4271 57,344 10-4-04 O Kuto.2058 10,250 8-31-02 X
Lad.1916 61,440 9-2-02 X Ladmar.2004 57,344 9-1-02 O
Lamebyte 8,192 4-30-03 O Lames.4096 8,192 1-3-98 O
Lamewin.1751 3,584 8-3-02 O Lamewin.1813 3,584 4-15-02 O
Lamzan 8,192 5-18-03 O Lanky.3153 12,288 5-1-02 O
LazyMin.31 96,768 4-9-04 X Legacy 19,968 3-1-04 O
Levi.2961 12,288 5-16-01 O Levi.3040 7,188 11-22-03 O
Levi.3090 12,288 11-22-03 O Levi.3137 35,941 11-22-03 O
Levi.3205 12,288 3-1-04 X Levi.3240 16,384 8-17-02 O
Levi.3244 16,384 11-22-03 X Levi.3432 16,384 11-22-03 O
Lom 3,41,504 11-22-03 O Lykov.a 9,338 6-9-03 X
Magic.1590 8,264 3-1-04 O Magic.1922 8,192 9-2-02 O
Magic.3038 12,288 11-22-03 X Magic.3078 12,288 8-17-02 O
Magic.3082 8,192 3-1-04 O Mark.919 2,048 6-30-03 O
Matrix.750 4,096 11-22-03 O Matrix.844 4,096 4-18-02 O
Matrix.LS.1820 8,192 8-26-01 O Matrix.LS.1885 8,192 11-22-03 O
Matrix.Zelda.a 4,096 3-10-04 O Matrix.Zelda.b 8,192 11-22-03 O
Matrix.Zelda.c 8,192 3-16-01 O Matyas.644 45,700 11-22-03 X
Maya.4106 4,188 12-7-99 X Maya.4108 8,192 11-22-03 X
Maya.4113 12,800 3-1-04 X Maya.4114 8,192 11-22-03 O
Maya.4161 8,192 3-1-04 O Maya.4206 8,192 10-4-02 O
Maya.4254 8,192 3-1-04 O Maya.4608 8,192 10-4-04 X
Melder 46,080 6-27-03 O Minit.b 10,752 4-27-04 X
MircNew 25,088 10-5-02 O Mix.1852 4,096 5-30-00 O
Mockoder.1120 4,192 8-31-02 O Mogul.6800 12,288 3-1-04 X
Mogul.6806 12,288 3-25-01 O Mogul.6845 57,344 11-22-03 O
Mogul.7189 12,288 3-25-01 X Mooder.a 8,192 4-3-02 O
Mooder.d 8,192 4-6-02 O Mooder.f 14,452 8-19-03 X
Mooder.g 8,192 4-7-03 O Mooder.i 8,192 5-1-03 O
Mooder.j 8,192 5-1-03 O Morgoth.2560 2,560 11-22-03 O
Mystery.2560 130,544 12-8-01 O NDie.2168 1,82,504 11-22-03 O
NDie.2343 1,82,725 11-22-03 O Neoval 143,35 5-18-03 O
NGVCK.gen 3,584 10-5-04 O Nicolam 57,344 4-27-03 O
Niko.5178 65,611 11-22-03 X Noise.410 57,344 3-10-02 O
Opdoc.1204 1,23,448 6-28-03 O Opdoc.1248 9,440 6-24-03 X
Oporto.3076 37,950 10-4-04 O Padic 8,192 3-1-04 O
Paradise.2116 8,192 9-29-02 O Paradise.2168 8,192 9-22-02 O
Parvo 80,093 3-1-04 O Peana 8,192 3-1-04 O
Perrun.a 11,780 3-10-04 O Perrun.b 5,636 7-11-02 O
PGPME 86,016 3-1-04 X Pilsen.4096 4,096 3-1-04 O
Positon.4668 8,192 7-15-02 X Qozah.1386 4,096 1-21-99 O
Qozah.3361 8,192 12-4-01 O Qozah.3365 8,192 3-1-04 O
Qozah.3370 8,192 8-2-99 X RainSong.3874 8,192 11-22-03 O
RainSong.3891 61,509 3-1-04 O RainSong.3910 8,192 12-5-01 X
RainSong.3956 12,288 10-4-04 X RainSong.4198 8,192 3-12-02 O
RainSong.4266 12,288 10-4-04 X Ramdile 18,801 3-1-04 X
Razenya 8,192 10-25-03 O Redart.2796 3,80,972 8-172000 X
Redemption.a 16,384 3-10-04 O Redemption.b 16,384 3-1-04 O
Redemption.c 7,171 6-15-98 O Refer.2939 36,352 3-1-04 O
RemEx 224,256 3-1-04 X Revaz 8,192 3-1-04 O
Rever 32,768 3-1-04 X Rhapsody.2602 221 10-4-04 O
Rhapsody.2619 8,192 3-1-04 O Riccy.a 32,768 3-10-04 O
Riccy.b 1,72,032 10-28-01 O Riccy.c 24,576 11-22-03 O
Rigel.6468 106,496 11-22-03 X Rikenar.1480 8,192 9-9-98 O
Rivanon 3,584 6-26-03 O Rufoll.1432 2,560 2-11-02 O
Rutern.5244 9,340 11-5-03 O Ryex 8,192 3-1-04 O
Sadon.900 8,192 3-1-04 O Sandman.4096 4,096 7-4-02 O

I. S. Yoo, U. Ultes-Nitsche

Table 9 continued

Virus name Size Date Detection Virus name Size Date Detection

Sankei.1062 8,192 8-28-03 O Sankei.1409 8,192 6-8-03 O
Sankei.1455 8,192 8-28-03 O Sankei.1493 8,192 6-8-03 O
Sankei.1766 8,192 6-8-03 O Sankei.1983 8,192 6-8-03 O
Sankei.3001 8,192 6-8-03 O Sankei.3077 8,192 6-8-03 O
Sankei.3480 8,192 6-8-03 O Sankei.3514 8,192 8-6-03 O
Sankei.3580 8,192 6-8-03 X Sankei.3586 8,192 6-8-03 O
Sankei.3621 8,192 8-6-03 O Sankei.4085 8,192 2-8-04 O
Santana.1104 81,920 12-4-01 O Savior.1680 8,192 1-8-01 O
Savior.1696 12,288 5-18-01 O Savior.1740 12,288 3-28-02 O
Savior.1828 20,480 8-6-01 O Savior.1832 12,288 3-1-04 O
Savior.1904 12,288 12-4-01 O Saynob.2406 5,120 5-15-03 O
Segax.1136 8,192 3-1-04 O Segax.1137 8,192 3-3-03 O
Segax.1160 8,192 7-12-01 O Sentinel.a 16,384 3-10-04 X
Senummy.1838 8,192 10-2-03 O Seppuku.1606 8,192 9-2-02 O
Seppuku.2763 30,208 5-8-02 O Seppuku.2764 30,208 3-1-04 O
Seppuku.4827 1,02,400 9-22-02 O Seppuku.6834 12,288 7-12-02 O
Seppuku.6972 12,288 9-1-01 O Seppuku.6973 12,288 7-12-02 O
Seppuku.9728 12,288 12-4-01 O Shan.1842 4,096 4-27-02 O
Shown.538 4,096 4-6-02 O Shown.539.a 4,096 3-10-04 O
Shown.540.b 4,096 5-19-03 O Silcer 17,920 3-1-04 X
Slaman.a 24,576 6-28-03 O Slaman.i 24,576 7-13-04 O
Small.1144 2,560 1-4-01 O Small.1368 53,248 5-5-02 O
Small.1388 8,192 9-2-02 O Small.139 94,208 7-17-02 O
Small.1393 8,192 1-2-02 O Small.1416 16,699 8-7-02 O
Small.1424 8,192 1-2-02 O Small.1468 8,192 4-6-03 O
Small.1700 4,286 8-5-02 O Small.2218 96,526 9-2-02 X
Small.2280 96,588 12-31-00 X Small.2560 8,192 4-25-03 O
Smog.b 12,288 10-2-03 O Spelac.1008 4,096 11-17-02 O
Spreder 5,95,924 5-9-03 X Staro.1538 8,192 3-1-04 O
Stepar.b 39,936 5-2-03 X Stepar.dr 19,456 1-1-04 X
Stepar.e 65,536 5-5-99 X Stepar.f 1,50,528 8-23-01 X
Stepar.g 1,37,216 8-23-01 O Stepar.j 1,39,264 8-23-01 O
Sugin 1,47,456 9-19-02 O Suns.3912 20,468 9-2-02 O
SWOG.based 4,096 6-13-02 O Taek.1275 6,144 7-27-02 O
Tapan.3882 12,288 12-31-01 O Team.a 4,096 3-10-04 O
Team.b 4,096 8-30-02 O Team.c 4,096 9-22-02 O
Team.d 4,096 9-14-02 O TeddyBear 2,560 3-1-04 O
Tenta.2045 10,240 5-9-02 O Test.1334 67,072 9-2-02 O
This31.16896 51,202 5-8-01 O Thorin.11932 16,384 3-1-04 O
Thorin.b 16,384 3-1-04 O Thorin.c 16,384 10-23-99 O
Thorin.d 16,384 7-14-99 O Thorin.e 16,384 10-23-99 O
Tolone 12,288 2-9-03 X Ultratt 332 9-19-01 X
Ultratt.8152 12,288 3-1-04 X Ultratt.8167 12,288 10-4-02 O
Undertaker.4887 12,288 11-22-03 O Undertaker.5036.a 12,288 11-22-03 O
Usem.a 16,384 7-11-02 O Usem.b 16,384 7-11-02 X
Vampiro.7018 18,432 3-1-04 X Vampiro.a 16,896 3-10-04 O
VbFrm 28,672 7-26-02 O VCell.3041 8,192 3-31-01 O
VCell.3468 8,192 8-29-01 O VCell.3504 8,192 3-1-04 O
VChain 1,10,592 3-1-04 O Velost.1186 8,192 9-19-02 O
Velost.1233 84,394 4-9-04 O Velost.1241 56,963 4-22-04 X
Vorcan 8,192 10-4-04 O Vulcano 12,288 3-1-04 O
Wabrex.a 8,192 3-10-04 O Weird.10240 9,216 3-1-04 O
Weird.c 83,968 10-7-00 O Weird.d 20,480 11-22-03 O
Wide.8225 16,896 7-30-02 X Wide.b 12,288 8-31-02 O
Wide.c 12,288 8-8-02 X Wolf.b 4,096 2-27-02 O
Wolf.c 8,192 10-4-04 O Xorala 3,06,176 3-7-04 O
Xoro.4092 6,140 5-16-02 O Yasw.1000 4,096 11-22-03 O
Yasw.924 4,096 12-29-00 O Yerg.9412 28,672 5-25-02 O
Yerg.9571 16,384 11-22-03 O Younga.4434 83,527 5-20-01 X
Zaka.a 2,809 11-1-04 X Zawex.3196 32,768 9-22-02 X
ZHymn.a 88,064 4-5-01 O ZHymn.b 90,112 8-23-01 O

Non-signature based virus detection

Table 9 continued

Virus name Size Date Detection Virus name Size Date Detection

ZHymn.Host 10,752 3-1-04 O ZMist 86,016 3-1-04 O
ZMist.d.dr 28,672 3-1-04 X ZMist.dr 28,672 10-4-04 X
Zombie 19,131 3-1-04 O Zomby.17920 17,920 11-22-03 O
ZPerm.a 99,840 3-10-04 O ZPerm.a2 73,728 11-13-00 O
ZPerm.b 70,144 3-1-04 O ZPerm.b2 1,39,264 11-22-03 X

Win32 Virus Total Number: 499, Error number: 103, False negative: 0.2064 (approx. 21%)

Date indicates the virus’s detected and caught date in form MM-DD-YY

Virus names are also the names of the test files. Size unit is Byte

Table 10 Normal executable
program’s virus check result
by VirusDetector

Normal executable file’s total
number: 80, Error number:
24, False positive: 0.3 (approx.
30%)

If the result of detection is
marked X, VirusDetector says
this file is a virus-infected file,
which means incorrect
detection

Filename Detection Filename Detection

dxwebsetup.exe divx311.exe
awsepersonal.exe DVD2DIVXVCD_trial.exe
paulp_en1.exe adrenalin2.0.1.exe
GOMPLAYER14.exe sdvd190.exe
csdl13.exe HwpViewer.exe
SSHSecureShellClient-3.2.9.exe DivX505Bundle.exe
klcodec220b.exe SwansMP24a-WCP.exe
DivXPro511GAINBundle.exe NATEON.exe X
WinPcap_3_1_beta_3.exe ducp708_type3_free.exe
wmpcdcs8.exe Acrobat.exe
iTunes.exe pccmain.exe
sicstusc.exe Tra.exe
acrodist.exe java.exe X
PCcpfw.exe sicstus.exe
Trialmsg.exe X Ad-Aware.exe
javaw.exe X PCctool.exe
splfr.exe X tsc.exe
AdobeUpdateManage.exe jpicp132.exe X
Photoshp.exe spmkds.exe
conf.exe policytool.exe X
spmkrs.exe X unregaaw.exe
CSDL.exe kinit.exe X
Powerpnt.exe ssh2.exe
Unwise.exe csdlvw.exe
klist.exe X Quicktimeplayer.exe
Sshclient.exe Wavtoasf.exe
dialog_patch.exe X ktab.exe X
ssh-keygen2.exe Winword.exe X
Directcd.exe moviemk.exe X
rmiregistry.exe X Tmntsrv.exe
Winzip32.exe Dreamweaver.exe
msmsgs.exe X Scandisc.exe
Tmoagent.exe Excel.exe
MSohtmed.exe X tmproxy.exe X
iedw.exe orbd.exe
servertool.exe X tmupdito.exe
iexplore.exe X PCClient.exe
sftp2.exe tnameserv.exe X
uninstall.exe X keytool.exe X
rmid.exe X scp2.exe

I. S. Yoo, U. Ultes-Nitsche

References

1. Chantico: Combating computer crime: prevention, detection,
investigation. McGraw-Hill, Inc, New York

2. Sophos: Top ten viruses and hoaxes reported to sophos in
september 2005 (2005)

3. Yoo, I.: Visualizing windows executable viruses using self-
organizing maps. In: Proceedings of the 11th ACM Confer-
ence on Computer and Communications Security (CCS 2004),
Workshop on Visualization and Data Mining for Computer
Security (VizSEC/DMSEC-04) (2004)

4. Kohonen, T.: Self-organizing maps. Springer, Berlin Heidel-
berg New York (1995)

5. Haykin, S.: Neural networks: a comprehensive foundation,
International Edition/2nd edn. Prentice Hall Englewood cliffs
(1999)

6. Kohonen, T.: Self-organized formation of topologically cor-
rect feature maps. Biol. Cybern. 43: 59–69 (1982)

7. Kohonen, T.: Self-organization and associative memory, 3rd
edn. Springer, Berlin Heidelberg New York (1988)

8. Hinton, G., Sejnowski, T.J.: Unsupervised learning: foun-
dations of neural computation. The MIT Press, Cambridge
(1999)

9. Yoo, I., Ultes-Nitsche, U.: How to predict email viruses under
uncertainty. In: Proceedings of the 23rd IEEE International
Performance, Computing and Communications Conference,
IPCCC 2004, Workshop of Information Assurance (WIA 04)
(2004)

10. CERT: Cert/cc incident note in-99-03 cih/chernobyl virus.
(1999)

11. Pfleeger, C.P.: Security in computing, International Edition,
2nd edn. Prentice-Hall International, Inc., Englewood cliffs
(1997)

12. Kaspersky, E.: Virus analysis texts – macro viruses. (2000)
13. Esa Alhoniemi, Johan Himberg, J.P., Vesanto, J.: Som tool-

box 2.0, a software library for matlab. SOM Toolbox team,
Laboratory of Computer and Information Science, Finland
(2002)

14. MATHWORKS: The mathworks, inc. MATLAB (2003)
15. KASPERSKY: Windows viruses (1994–2005)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

